Все, что нашли, собрали здесь. Кому есть, чем дополнить — дополняйте, добавим.
Рекомендательный механизм типа Top-N реализованный в виде библиотеки. Механизм SUGGEST, созданный Джорджем Кариписом (George Karypis) в Миннесотском университете, использует несколько алгоритмов коллаборативной фильтрации и реализует коллаборативную фильтрацию на основе пользователей и на основе элементов. Конкретный алгоритм можно указать при инициализации определенного набора данных.
Язык: C
Опенсорсное веб-приложение, которое позволяет интегрировать персональные рекомендации в веб-сайт, используя веб-сервисы RESTful.
Язык: Java
Опенсорсное ПО, доступное для использования только в некоммерческих целях.
Язык: C#, F#, Clojure, Python, Ruby
Опенсорсное ПО, предоставляющее API для рекомендательных алгоритмов, инструменты оценки (в том числе офлайн), коллаборативной фильтрации.
Язык: Java
Библиотека программного обеспечения для создания прогнозирующих механизмов, созданная в Институте телематики (Норвегия). Последнее обновление кода этой платформы было выполнено в 2009 году, поэтому скорее всего этот проект в настоящее время неактивен.
Язык: Java
Инфраструктура рекомендательного механизма для Python, в которой используются некоторые составляющие экосистемы Python для вычислений научного характера, такие как NumPy и SciPy. В Crab реализована коллаборативная фильтрация на основе пользователей и на основе элементов. В рамках будущего развития проекта Crab запланирована реализация алгоритма Slope One и алгоритма сингулярного разложения (Singular Value Decomposition), а также применение API-интерфейсов типа REST.
Язык: Python
Комплект инструментов на базе интерфейса командной строки. Реализует мелкомодульные задачи из области машинного обучения, включая формирование рекомендаций (а также задач более высокого уровня).
Язык: С++
Расширение для среды R, позволяющее работать с коллаборативной фильтрацией, а также оценку и сравнение нескольких алгоритмов.
Язык: R
Apache Mahout Опенсорс-библиотека для машинного обучения от Apache. Алгоритмы, которые библиотека реализует в совокупности можно назвать машинным обучением или коллективным интеллектом. Это может означать многое, но в настоящий момент это означает, в первую очередь, рекомендательные системы (коллаборативная фильтрация), кластеризацию и классификацию.
likelike Использует вероятностный метод понижения размерности многомерных данных. Область применения: рекомендации товаров на e-commerce сайтах, новостей.
Язык: Java
Cемейство алгоритмов для коллаборативной фильтрации (используемой в рекомендательных системах) для анализа различных мнений и пожеланий пользователей и выработки персональных рекомендаций.
Язык: PHP/MySQL
Библиотека, которая дает возможность веб-мастерам быстро внедрять функции персонализации в сайты.
Язык: PHP
Кто пользовался какой-то библиотекой, можете накидать плюсы и минусы, читающим будет интересно.